Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ther Innov Regul Sci ; 58(1): 21-33, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815738

RESUMO

Advanced Therapies are a class of innovative complex biological products used for therapeutic purposes, encompassing cell therapy, tissue engineering, and gene therapy products. These are promising therapeutic strategies for several complex diseases with low or non-existent therapeutic alternatives. The proper transposition of basic research in this area into medicinal products must comply with regulatory requirements. Here we review the main regulatory recommendations, emphasizing on the Brazilian regulation. The critical points are the manufacturing process, challenges in characterizing the product, development of non-clinical trials, lack of adequate animal models representative of the clinical situation, and absence of valid and measurable therapeutic endpoints. Based on that, we propose a framework for strategic planning of pre-clinical studies in this field. The detailed example involves producing a nonviral vector-based gene editing product, but the regulations and methods may be extrapolated for developing different types of advanced therapies.


Assuntos
Produtos Biológicos , Planejamento Estratégico , Animais , Brasil , Terapia Baseada em Transplante de Células e Tecidos , Engenharia Tecidual , Produtos Biológicos/uso terapêutico
2.
Cell Mol Neurobiol ; 43(6): 2939-2951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37055607

RESUMO

Melanoma is the most aggressive type of skin cancer. Brain metastasis is the worst scenario in metastatic melanoma and the treatment options for these patients are limited. Temozolomide (TMZ) is a chemotherapy agent used to treat primary central nervous system tumors. Our objective was to develop chitosan-coated nanoemulsion containing temozolomide (CNE-TMZ) for nasal route administration to melanoma brain metastasis treatment. A preclinical model of metastatic brain melanoma was standardized, and the efficiency of the developed formulation was further determined in vitro and in vivo. The nanoemulsion was done by spontaneous emulsification method and the formulation was characterized by size, pH, polydispersity index, and zeta potential. Culture assessments to determine cell viability were done in the A375 human melanoma cell line. To determine the safety of formulation, healthy C57/BL6 mice were treated with a nanoemulsion without TMZ. The model in vivo used B16-F10 cells implanted by stereotaxic surgery in C57/BL6 mice brains. The results demonstrate that the preclinical model used showed to be useful to analyze the efficiency of new candidate drugs to treat melanoma brain metastasis. The chitosan-coated nanoemulsions with TMZ showed the expected physicochemical characteristics and demonstrated safety and efficacy, reducing around 70% the tumor size compared to control mice, and presenting a tendency in mitotic index reduction, becoming an interesting approach to treat melanoma brain metastasis.


Assuntos
Neoplasias Encefálicas , Quitosana , Melanoma , Humanos , Animais , Camundongos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral
3.
J Control Release ; 355: 343-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731799

RESUMO

Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Suínos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Administração Intranasal , Poloxâmero/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico
4.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559157

RESUMO

Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.

5.
Pharmaceutics ; 14(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36559219

RESUMO

Achyrocline satureioides (Lam.) DC extract-loaded nanoemulsions have demonstrated potential for wound healing, with promising effects on keratinocyte proliferation. We carried out the first in vivo investigation of the wound healing activity of a hydrogel containing A. satureioides extract-loaded nanoemulsions. We prepared hydrogels by adding the gelling agent (Carbopol® Ultrez) to extract-loaded nanoemulsions (~250 nm in diameter) obtained by spontaneous emulsification. The final flavonoid content in formulation was close to 1 mg/mL, as estimated by ultra-fast liquid chromatography. Permeation/retention studies using porcine ear skin showed that flavonoids reached deeper layers of pig ear skin when it was damaged (up to 3.2 µg/cm² in the dermis), but did not reach the Franz-type diffusion cell receptor fluid. For healing activity, we performed a dorsal wound model using Wistar rats, evaluating the lesion size, anti-inflammatory markers, oxidative damage, and histology. We found that extract-loaded formulations promoted wound healing by increasing angiogenesis by ~20%, reducing inflammation (tumor necrosis factor α) by ~35%, decreasing lipid damage, and improving the re-epithelialization process in lesions. In addition, there was an increase in the number of blood vessels and hair follicles for wounds treated with the formulation compared with the controls. Our findings indicate that the proposed formulation could be promising in the search for better quality healing and tissue reconstruction.

6.
Adv Drug Deliv Rev ; 191: 114616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356930

RESUMO

Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridoses , Animais , Edição de Genes , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridoses/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Terapia de Reposição de Enzimas/métodos , Lisossomos
7.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432716

RESUMO

The essential oil extracted from the leaves of Piper aduncum, an aromatic plant from the Amazon region, is rich in dillapiole and presents anti-inflammatory activity. In this study, nanoemulsions (NE) and nanostructured lipid carriers (NLC), which are biocompatible nanostructured systems of a lipid nature, were prepared by high-pressure homogenization for the yet unexplored skin delivery of dillapiole. The addition of hydroxyethylcellulose produced hydrogel-thickened NE or NLC in view to improving the viscosity and skin adherence of the nanoformulations. Formulations were characterized with respect to dillapiole content, droplet size, polydispersity index, zeta potential, morphology, rheological behavior, bioadhesion, skin permeation profile, and in vitro irritancy (HET-CAM). The formulations developed presented spherical, homogeneous nanometric particle size (around 130 nm), narrow polydispersity index (<0.3), and negative zeta potential (around −40 mV). Dillapiole content was slightly lower in NLC compared to NE since the production process involves heating. The hydrogels containing nanocarriers showed pseudoplastic behavior with bioadhesive characteristics. The developed formulations exhibited a controlled release profile, dillapiole delivery up to the dermis, the layer of interest for anti-inflammatory potential, and low irritant potential in the chorioallantoic membrane (HET-CAM). Both hydrogels-thickened NE and NLC seemed to be promising formulations for skin delivery of Piper aduncum essential oil.

8.
Pharmaceutics ; 14(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432720

RESUMO

Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.

9.
Pharmaceutics ; 14(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36297456

RESUMO

Despite a considerable number of new antibiotics under going clinical trials, treatment of intracellular pathogens still represents a major pharmaceutical challenge. The use of lipid nanocarriers provides several advantages such as protection from compound degradation, increased bioavailability, and controlled and targeted drug release. Wheat germ agglutinin (WGA) is known to have its receptors on the alveolar epithelium and increase phagocytosis. The present study aimed to produce nanostructured lipid carriers with novel glycosylated amphiphilic employed to attach WGA on the surface of the nanocarriers to improve intracellular drug delivery. High-pressure homogenization was employed to prepare the lipid nanocarriers. In vitro, high-content analysis and flow cytometry assay was employed to study the increased uptake by macrophages when the nanocarriers were grafted with WGA. A lipid nanocarrier with surface-functionalized WGA protein (~200 nm, PDI > 0.3) was successfully produced and characterized. The system was loaded with a lipophilic model compound (quercetin; QU), demonstrating the ability to encapsulate a high amount of compound and release it in a controlled manner. The nanocarrier surface functionalization with the WGA protein increased the phagocytosis by macrophages. The system proposed here has characteristics to be further explored to treat intracellular pathogens.

10.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407191

RESUMO

Curcumin (CUR) and quercetin (QU) are potential compounds for treatment of brain diseases such as neurodegenerative diseases (ND) because of their anti-inflammatory and antioxidant properties. However, low water solubility and poor bioavailability hinder their clinical use. In this context, nanotechnology arises as a strategy to overcome biopharmaceutical issues. In this work, we develop, characterize, compare, and optimize three different omega-3 (ω-3) fatty acids nanoemulsions (NEs) loaded with CUR and QU (negative, cationic, gelling) prepared by two different methods for administration by intranasal route (IN). The results showed that formulations prepared with the two proposed methods exhibited good stability and were able to incorporate a similar amount of CUR and QU. On the other side, differences in size, zeta potential, in vitro release kinetics, and permeation/retention test were observed. Considering the two preparation methods tested, high-pressure homogenization (HPH) shows advantages, and the CQ NE- obtained demonstrated potential for sustained release. Toxicity studies demonstrated that the formulations were not toxic for Caenorhabditis elegans. The developed ω-3 fatty acid NEs have shown a range of interesting properties for the treatment of brain diseases, since they have the potential to increase the nose-to-brain permeation of CUR and QU, enabling enhanced treatments efficiency.

11.
Pharmaceutics ; 13(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452202

RESUMO

Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen's egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, ζ-potential of -40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 µg/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 µg/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential.

12.
Planta Med ; 87(6): 480-488, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578433

RESUMO

Trichomonas vaginalis causes trichomoniasis, a nonviral sexually transmitted infection with a high prevalence worldwide. Oral metronidazole is the drug of choice for the treatment of this disease, although high levels of T. vaginalis resistance to this agent are well documented in the literature. This study describes the anti-T. vaginalis activity of an optimized coumarin-rich extract from Pterocaulon balansae. Optimization was performed to maximize extraction of total coumarins by means of a 3-level Box-Behnken design, evaluating the effect of three factors: extraction time, plant : solvent ratio, and ethanol concentration. Optimum conditions were found to be 5 h extraction time and a plant : solvent ratio of 1% (w/v) and 60% (v/v) ethanol, which resulted in approximately 30 mg of total coumarins/g of dry plant. The coumarin-enriched extract exhibited a minimum inhibitory concentration of 30 µg/mL and an IC50 of 3.2 µg/mL against T. vaginalis, a low cytotoxicity, and a high selectivity index (18 for vaginal epithelial cells and 16 for erythrocytes). The coumarins permeation/retention profile through porcine vaginal mucosa was evaluated in Franz-type diffusion cells. After 8 h of kinetics, coumarins were detected in the tissue (4.93 µg/g) without detecting them in the receptor compartment. A significant increase of coumarins in the mucosa layers (8.18 µg/g) and receptor compartment (0.26 µg/g) was detected when a T. vaginalis suspension (2 × 105 trophozoites/mL) was previously added onto the mucosa. No alterations were visualized in the stratified squamous non-keratinized epithelium of the porcine vaginal mucosa after contact with the extract. Overall, these results suggest that the P. balansae coumarin-rich extract may have potential as a treatment for trichomoniasis.


Assuntos
Asteraceae , Trichomonas vaginalis , Animais , Cumarínicos/farmacologia , Feminino , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Suínos
13.
Curr Gene Ther ; 21(5): 464-471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573568

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disorder caused by α-L-iduronidase (IDUA) deficiency. The available treatments are not effective in improving all signs and symptoms of the disease. OBJECTIVE: In the present study, we evaluated the transfection efficiency of repeated intravenous administrations of cationic nanoemulsions associated with the plasmid pIDUA (containing IDUA gene). METHODS: Cationic nanoemulsions were composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]- 2000) (DSPE-PEG), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), medium- chain triglycerides, glycerol, and water and were prepared by high-pressure homogenization and were repeatedly administered to MPS I mice for IDUA production and gene expression. RESULTS: A significant increase in IDUA expression was observed in all organs analyzed, and IDUA activity tended to increase with repeated administrations when compared to our previous report when mice received a single administration of the same dose. In addition, GAGs were partially cleared from organs, as assessed through biochemical and histological analyzes. There was no presence of inflammatory infiltrate, necrosis, or signs of an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed a reduced presence of macrophage cells in treated than in untreated MPS I mice. CONCLUSION: These sets of results suggest that repeated administrations can improve transfection efficiency of cationic complexes without a significant increase in toxicity in the MPS I murine model.


Assuntos
Mucopolissacaridose I , Animais , Terapia Genética , Iduronidase/genética , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Plasmídeos , Transfecção
14.
Curr Drug Deliv ; 18(6): 770-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583376

RESUMO

BACKGROUND: Lipid nanocarriers have been widely tested as drug delivery systems to treat diseases due to their bioavailability, controlled release, and low toxicity. For the pulmonary route, the Food and Drug Administration favors the use of substances generally recognized as safe, as well as biodegradable and biocompatible to minimize the possibility of toxicity. Tuberculosis (TB) remains a public health threat worldwide, mainly due to the long treatment duration and adverse effects. Therefore, new drug delivery systems for treating TB are needed. OBJECTIVE: Physicochemical characterization of different lipid-based nanocarriers was used to optimize carrier properties. Optimized systems were incubated with Mycobacterium tuberculosis to assess whether lipid-based systems act as the energy source for the bacteria, which could be counterproductive to therapy. METHODS: Several excipients and surfactants were evaluated to prepare different types of nanocarriers using high-pressure homogenization. RESULTS: A mixture of trimyristin with castor oil was chosen as the lipid matrix after differential scanning calorimetry analysis. A mixture of egg lecithin and PEG-660 stearate was selected as an optimal surfactant system, as this mixture formed the most stable formulations. Three types of lipid nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers (NLC), and nanoemulsions, were prepared, with the NLC systems showing the most suitable properties for further evaluation. It may provide the advantages of increasing the entrapment efficiency, drug release, and the ability to be lyophilized, producing powder for pulmonary administration as an alternative to entrap poor water-soluble molecules. CONCLUSION: Furthermore, the NLC system can be considered for use as a platform for the treatment of TB through the pulmonary route.


Assuntos
Portadores de Fármacos , Nanopartículas , Tuberculose , Excipientes , Humanos , Lipídeos , Tamanho da Partícula , Tuberculose/tratamento farmacológico
15.
Photochem Photobiol Sci ; 19(10): 1460-1469, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33026028

RESUMO

The overexposure of the skin to ultraviolet (UV) radiation may lead to oxidative stress, resulting in severe damage. The prevention of skin injuries through the topical application of natural compounds rich in antioxidants, such as propolis extracts, has shown promising results. In Brazil, the "red propolis" extract has stood out due to its complex constitution, based mainly on polyprenylated benzophenones (BZP). However, although the use of red propolis extracts has been shown to be encouraging, their addition in topical formulations is limited by the low solubility of BZP. For this reason, this study aimed to develop topical nanoemulgels containing Brazilian red propolis (BRP) extract to increase the potential of topical application, and the evaluation of skin protection against UVA/UVB radiation damage by means of protein carbonylation, protein thiol content and TBARS assays. The nanoemulgels were obtained by adding gelling polymer to nanoemulsions that were previously prepared by spontaneous emulsification. In this sense, a nanoemulgel containing BRP extract-loaded nanoemulsions (H-NE) and a nanoemulgel containing BRP extract-loaded nanoemulsions with DOTAP (H-NE/DT) were prepared. The physicochemical characterization of nanoemulgels showed monodisperse populations of 200-300 nm. The H-NE zeta potential was -38 mV, while that of H-NE/DT was +36 mV. BZP content in the formulations was around 0.86 mg g-1. These parameters remained stable for 90 days under cold storage. H/NE and H-NE/DT presented a non-Newtonian pseudoplastic rheological behavior. Permeation/retention studies, through porcine ear skin, showed the highest BZP retention (18.11 µg cm-2 after 8 h) for H-NE/DT, which also demonstrated, in an in vitro study, the highest ability to protect skin against oxidative damage after UVA/UVB radiation exposure. The results concerning the antioxidant activity revealed that formulations containing the BRP n-hexane extract were the most promising in combating oxidative stress, probable due to the presence of polyprenylated BZP. Altogether, the outcomes of this study suggest that nanoemulgels have suitable characteristics for topical application, and may be an alternative for the prevention of oxidative skin damage caused by UVA/UVB radiation.


Assuntos
Antioxidantes/farmacologia , Benzofenonas/farmacologia , Nanopartículas/química , Própole/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Animais , Antioxidantes/química , Benzofenonas/química , Brasil , Orelha , Géis/química , Géis/farmacologia , Conformação Molecular , Tamanho da Partícula , Própole/química , Substâncias Protetoras/química , Propriedades de Superfície , Suínos , Raios Ultravioleta
16.
Neurochem Int ; 141: 104875, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039443

RESUMO

Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects. The animals were treated through nasal route with RA CNE (2 mg·mL-1), free RA (2 mg·mL-1), blank CNE, and saline (control and LPS groups) administrations (n.a., 100 µL per nostril) twice a day (7 a.m./7 p.m.) for six days. On the sixth day, the animals received the last treatments and LPS was intraperitoneally (i.p.) administrated (250 µg·kg-1). Overall results, proved for the first time that the RA CNE nasal administration elicits a neuroprotective effect against LPS-induced damage, which was associated with increased 1.6 times recognition index, decreased 5.0 and 1.9 times in GFAP+ cell count and CD11b expression, respectively, as well as increased 1.7 times SH in cerebellum and decreased 3.9 times TBARS levels in cerebral cortex in comparison with LPS group. RA CNE treatment also facilitates RA bioavailability in the brain, confirmed by RA quantification. Free RA also demonstrates a protective effect in some studied parameters, although no RA was quantified in the brain.


Assuntos
Quitosana/química , Cinamatos/administração & dosagem , Cinamatos/uso terapêutico , Depsídeos/administração & dosagem , Depsídeos/uso terapêutico , Encefalite/prevenção & controle , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Administração Intranasal , Animais , Antioxidantes/farmacologia , Disponibilidade Biológica , Cinamatos/química , Depsídeos/química , Composição de Medicamentos , Emulsões , Encefalite/induzido quimicamente , Lipopolissacarídeos , Masculino , Transtornos da Memória/induzido quimicamente , Fármacos Neuroprotetores/química , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Colloids Surf B Biointerfaces ; 196: 111301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32871442

RESUMO

Soybean isoflavone aglycones have been investigated as potential wound healing compounds for topical application. The aim of this study was to evaluate the wound healing properties of a soybean isoflavone aglycones-rich fraction (IAF) when incorporated into lipid nanoemulsions dispersed in acrylic-acid hydrogels. Formulations exhibited a mean droplet size in the sub 200 nm range, negative ζ-potential (-60 mV), and displayed non-Newtonian pseudoplastic behavior. The addition of a gelling agent decreased the IAF release from formulations and improved the retention of these compounds in intact porcine ear skin when compared with a control propylene glycol solution. No IAF were detected in receptor fluid of Franz-type diffusion cells. However, increasing amounts of IAF were noticed in both skin layers and the receptor fluid when the tissue was partially injured (tape stripping), or when the epidermis was completely removed. In vitro studies showed that IAF elicits an increased proliferation and migration of keratinocytes (HaCaT cell line). Subsequently, the healing effect of the formulations was evaluated in a model of dorsal wounds in rats, by assessing the size of the lesions, histology, inflammatory markers, and antioxidant activity. Overall findings demonstrated the potential of IAF-loaded formulations to promote wound healing by increasing angiogenesis by ∼200 %, reducing the lipid oxidation (TBARS) by ∼52 % and the inflammation (TNFα) by ∼35 %, while increasing re-epithelialization by ∼500 %, visualized by the epithelium thickness.


Assuntos
Hidrogéis , Isoflavonas , Animais , Isoflavonas/farmacologia , Ratos , Pele , Suínos , Cicatrização
18.
Phytochem Anal ; 31(6): 905-914, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32573881

RESUMO

INTRODUCTION: Achyrocline satureioides (marcela or macela) is a plant widely used in folk medicine in South America. Recently, there has been increasing interest for the development of skin care products containing A. satureoides extracts, due to its well-documented antioxidant, antiherpetic, and wound healing properties. OBJECTIVES: The present study aimed to develop and validate a yet unexplored stability-indicating and robust ultra-fast liquid chromatography (UFLC) method for the simultaneous quantification of the main flavonoids of A. satureioides in extracts, nanoemulsions, and porcine skin layers. MATERIAL AND METHODS: The chromatographic separation of flavonoids quercetin, luteolin, and 3-O-methylquercetin was performed on a Luna C18 analytical column (100 mm × 2.0 mm i.d.; particle size 2.5 µm) using isocratic elution with methanol/phosphoric acid 1% (48:52 v/v) with a flow rate of 0.3 mL/min at 40°C. RESULTS: The method was found to be specific, linear (R > 0.998), precise, accurate, and robust for all flavonoids assayed in A. satureioides extract, nanoemulsions, and porcine ear skin. A low matrix effect was noted for all complex matrices. The stability-indicating UFLC method was evaluated by submitting isolated flavonoids, a mixture of standards, and A. satureioides extract to acidic, alkaline, oxidative, UV-A/UV-C light, and thermal stress conditions. No peaks were found co-eluting with the flavonoids of interest in all matrices. The robustness of the method was confirmed using Plackett-Burman experimental design. CONCLUSION: The short run time (8 min) and reliability of the method could be useful for the determination of A. satureioides flavonoids in topical product development since extracts of this medicinal plant have been used to treat various skin disorders.


Assuntos
Achyrocline , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Flavonoides/análise , Extratos Vegetais , Reprodutibilidade dos Testes , Projetos de Pesquisa , Pele/química , Suínos
19.
Eur J Pharm Sci ; 148: 105318, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32205230

RESUMO

ß-caryophyllene is a sesquiterpene present in the oil of many plant species, such as Copaifera sp., which has been shown to possesses potent anti-inflammatory action; however, its healing activity remains under study. The objectives of the present study were to produce a nanoemulsion containing ß-caryophyllene followed by a hydrogel containing nanoemulsified ß-caryophyllene, to evaluate the permeation profile in vitro, and to assess the in vivo healing activity, which is so far unexplored in the literature for pure ß-caryophyllene and in pharmaceutical formulation. The nanoemulsion was obtained through high-pressure homogenization and the hydrogel by direct dispersion with hydroxyethylcellulose. Both formulations were characterized according to droplet size, polydispersity index, volume-weighted mean diameters, particle distribution, droplets diameters tracking, zeta potential, viscosity and bioadhesion behavior. ß-caryophyllene content was determined by gas chromatography coupled with mass spectrometry (GC/MS). Both formulations presented a nanometric droplet size, negative zeta potential, high ß-caryophyllene content, and were stable for 60 days. In agreement with the viscosity results, the hydrogel containing the ß-caryophyllene nanoemulsion showed superior bioadhesiveness than the nanoemulsion. The skin permeation study in Franz cells demonstrated that isolated ß-caryophyllene was unable to cross the stratum corneum and that its nanoemulsification promoted its permeation. On the other hand, in the simulated deeply wounded skin (dermis), no significant differences were observed between the formulations and isolated ß-caryophyllene with respect to the amount of marker retention in the dermis, suggesting saturation of this skin layer. For the study of healing activity, the dorsal wound model was performed with an evaluation of the lesion size, anti-inflammatory markers, and antioxidant activity. The initial closure of the wound was achieved sooner in the group treated with the hydrogel containing the ß-caryophyllene nanoemulsion, indicating its anti-inflammatory effect. The histological analysis indicated that on day 12 day of the lesion, the hydrogel presented similar results to those of the positive control group (Dersani® oil), proving effectiveness in cutaneous tissue repair.


Assuntos
Sesquiterpenos Policíclicos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/metabolismo , Emulsões/farmacologia , Hidrogéis/farmacologia , Inflamação/metabolismo , Interleucina-1/metabolismo , Masculino , Ratos , Ratos Wistar , Pele/patologia , Absorção Cutânea/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/metabolismo
20.
Cell Mol Neurobiol ; 40(1): 123-139, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31446560

RESUMO

Rosmarinic acid (RA) is a natural polyphenolic compound with a well-documented neuroprotective effect mainly associated with its anti-inflammatory and antioxidant activities. Recently, our research group developed and optimized chitosan-coated RA nanoemulsions (RA CNE) intended to be used for nasal delivery as a new potential neuroprotective therapy. In this sense, the present study aimed to evaluate the protective and/or therapeutic potential of RA CNE in inflammation/oxidative stress induced by LPS (1 µg mL-1) in rat astrocyte primary cultures. In summary, pre-treatment with RA CNE before exposure to LPS (protective protocol) reduced significantly the LPS-induced alterations in astrocyte cell viability, proliferation, and cell death by necrosis, which was not observed in therapeutic protocol. RA CNE protective protocol also enhanced anti-oxidative status by ~ 50% by decreasing oxygen reactive species production and nitric oxide levels and preventing total thiol content decrease. Finally, our results demonstrate the protective effect of RA CNE in migratory activation and GFAP expression of reactive astrocytes. Overall, our findings indicate for the first time the RA CNE glioprotective potential, associated with an increase in cell viability and proliferation, a preventive effect on cellular death by necrosis, migratory ability and hypertrophic reactive astrocytes, and the reparation of astrocyte redox state.


Assuntos
Astrócitos/patologia , Quitosana/química , Cinamatos/farmacologia , Depsídeos/farmacologia , Inflamação/patologia , Nanopartículas/química , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cinamatos/química , Depsídeos/química , Emulsões , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos , Neuroglia/metabolismo , Fármacos Neuroprotetores/química , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA